9b3ea869

Выбор в линейных списках


Задача выбора. Задан линейный список целых, различных по значению чисел B=, требуется найти элемент, имеющий i-тое наибольшее значение в порядке убывания элементов. При i=1 задача эквивалентна поиску максимального элемента, при i=2 поиску элемента с вторым наибольшим значением.

Поставленная задача может быть получена из задачи поиска j-того минимального значения заменой i=n-j+1 и поиском i-того максимального значения. Особый интерес представляет задача выбора при i=a/n, 0<a<1, в частности, задача выбора медианы при a=1/2.

Все варианты задачи выбора легко решаются, если список B полностью отсортирован, тогда просто нужно выбрать i-тый элемент. Однако в результате полной сортировки списка B получается больше информации, чем требуется для решения поставленной задачи.

Количество действий можно уменьшить применяя сортировку выбором только частично до i-того элемента. Это можно сделать, напри мер при помощи функции findi

/* выбор путем частичной сортировки */ int findi(int *s, int n, int i) { int c,j,k; for (k=0; k

Эта функция ищет элемент с индексом i, частично сортируя массив s, и выполняет при этом (n*i) сравнений. Отсюда следует, что функция findi приемлима для решения задачи при малом значении i, и малоэффективна при нахождении медианы.

Для решения задачи выбора i-того наибольшего значения в списке B модифицируем алгоритм быстрой сортировки. Список B разбиваем элементом K1 на подсписки B' и B", такие, что если Ki -B', то Ki>K1, и если Ki - B", то Ki<K1, и список B реорганизуется в список B',K1,B". Если K1 элемент располагается в списке на j-том месте и j=i, то искомый элемент найден. При j>i наибольшее значение ищется в списке B'; при j<i будем искать (i-j) значение в подсписке B".

Алгоритм выбора на базе быстрой сортировки в общем эффективен, но для улучшения алгоритма необходимо, чтобы разбиение списка на подсписки осуществлялось почти пополам. Следующий алгоритм эффективно решает задачу выбора i-того наибольшего элемента в списке B, деля его на подсписки примерно равной величины.

1. Если N<21, то выбрать i-тый наибольший элемент списка B обычной сортировкой.

2. Если N>21 разделим список на P=N/7 подсписков по 7 элементов в каждом, кроме последнего в котором mod(N,7) элементов.

3. Определим список W из медиан полученных подсписков (четвертых наибольших значений) и найдем в W его медиану M (рекурсивно при помощи данного алгоритма) т.е. (P/2+1)-й наибольший элемент.

4. С помощью элемента M разобьем список B на два подсписка B' с j элементами большими или равными M, и B" c N-j элементами меньшими M. При j>i повторим процедуру поиска сначала, но только в подсписке B'. При j=i искомый элемент найден, равен M и поиск прекращается. При j < i будем искать (i-j)-тый наибольший элемент в списке B".



Начало  Назад  Вперед







Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий