9b3ea869

Быстрая и распределяющая сортировки


Быстрая сортировка состоит в том, что список В=< K1,K2,...,Kn>

реорганизуется в список B',< K1 >,B", где В' - подсписок В с элементами, не большими К1, а В" - подсписок В с элементами, большими К1. В списке B',< K1 >,B" элемент К1 расположен на месте, на котором он должен быть в результирующем отсортированном списке. Далее к спискам B' и В" снова применяется упорядочивание быстрой сортировкой. Приведем в качестве примера сортировку списка, отделяя упорядоченные элементы косой чертой, а элементы Ki знаками < и >.

Пример:

9, 7, 18, 3, 52, 4, 6, 8, 5, 13, 42, 30, 35, 26 7, 3, 4, 6, 8, 5/ / 18, 52, 13, 42, 30, 35, 26 3, 4, 6, 5// 8/ 9/ 13/ / 52, 42, 30, 35, 26 / 4, 6, 5/ 7/ 8/ 9/ 13/ 18/ 42, 30, 35, 26/

3/ / 6, 5/ 7/ 8/ 9/ 13/ 18/ 30, 35, 26/ / 52 3/ 4/ 5/ / 7/ 8/ 9/ 13/ 18/ 26/ / 35/ 42/ 52

Время работы по сортировке списка методом быстрой сортировки зависит от упорядоченности списка. Оно будет минимальным, если на каждом шаге разбиения получаются подсписки B' и В" приблизительно равной длины, и тогда требуется около N*log2(N) шагов. Если список близок к упорядоченному, то требуется около (N*N)/2 шагов.

Рекурсивная функция quick упорядочивает участок массива s быстрой сортировкой.

/* быстрая сортировка */ double * quick(double *s,int low,int hi) { double cnt,aux; int i,j; if (hi>low) { i=low; j=hi; cnt=s[i]; while(i &lt j) { if (s[i+1]

Здесь используются два индекса i и j, проходящие части массива навстречу друг другу (см. рис.30). При этом i всегда фиксирует разделяющий элемент cnt=s[low], слева от которого находятся числа, не большие cnt, а справа от i - числа, большие cnt. Возможны три случая: при s[i+1]cnt и s[j]cnt и s[j]>cnt. По окончании работы i=j, и cnt=s[i] устанавливается на своем месте.

Рис.30. Схема быстрой сортировки.

Быстрая сортировка требует дополнительной памяти порядка log2(N) для выполнения рекурсивной функции quick (неявный стек).

Оценка среднего количества действий, необходимых для выполнения быстрой сортировки списка из N различных чисел, получена как оценка отношения числа различных возможных последовательностей из N различных чисел, равного N!, и общего количества действий C(N), необходимых для выполнения быстрой сортировки всех различных последовательностей. Доказано, что C(N)/N! < 2*N*ln(N).

Распределяющая сортировка. Предположим, что элементы линейного списка В есть Т-разрядные положительные десятичные числа D(j,n) - j-я справа цифра в десятичном числе n>=0, т.е. D(j,n)=floor(n/m)%10, где m=10^(j-1). Пусть В0,В1,...,В9 - вспомогательные списки (карманы), вначале пустые.

Для реализации распределяющей сортировки выполняется процедура, состоящая из двух процессов, называемых распределение и сборка для j=1,2,...,T.

PАСПРЕДЕЛЕНИЕ заключается в том, что элемент Кi (i=1,N) из В добавляется как последний в список Bm, где m=D(j,Ki), и таким образом получаем десять списков, в каждом из которых j-тые разряды чисел одинаковы и равны m.

СБОРКА объединяет списки В0,В1,...,В9 в этом же порядке, образуя один список В.

Рассмотрим реализацию распределяющей сортировки при Т=2 для списка: B= .


РАСПРЕДЕЛЕНИЕ-1: B0=, B1=< >, B2=, B3=, B4=, B5=, B6=,B7=, B8=, B9=. СБОРКА-1: B=

РАСПРЕДЕЛЕНИЕ-2: B0=, B1=, B2=, B3=, B4=, B5=, B6=< >,B7=< >,B8=< >, B9=< >. СБОРКА-2: B=.

Количество действий, необходимых для сортировки N T-цифровых чисел, определяется как Q(N*T). Недостатком этого метода является необходимость использования дополнительной памяти под карманы.

Однако можно исходный список представить как связанный и сортировку организовать так, чтобы для карманов В0,В1,...,В9 не использовать дополнительной памяти, элементы списка не перемещать, а с помощью перестановки указателей присоединять их к тому или иному карману.

В представленной ниже программе функция pocket реализует распределяющую сортировку связанного линейного списка (указатель q), в котором содержатся Т-разрядные десятичные положительные числа, без использования дополнительной памяти; в функции a[i], b[i] указывают соответственно на первый и на последний элементы кармана Bi.

/* вызов распределяющeй сортировки списка */ #include

#include

typedef struct str { long val; struct str *n; } SP1; main() { int i; SP1 *q=malloc(sizeof(SP1)),*r; SP1 *pocket(SP1 * ,int ); long a[14]={ 0,7,18,3,52,4,6,8,5,13,42,30,35,26 }; q->n=NULL; q->val=a[0]; r=q; printf(" %d",a[0]); for(i=1;in=malloc(sizeof(SP1)); r->val=a[i]; (r->n)->n=NULL; r=r->n; printf(" %d",a[i]); } r=pocket(q,2); printf("\n"); /* печать результатов */ while (r!=NULL) { printf(" %d",r->val); r=r->n; } } /* распределяющая сортировка списка */ SP1 *pocket(SP1 *q,int t) { int i,j,k,m=1; SP1 *r, *gg, *a[10], *b[10]; gg=q; for(j=1;jval/m))%(int)10; r=b[k]; if (a[k]==NULL) a[k]=q; else r->n=q; r=b[k]=q; q=q->n; r->n=NULL; } for(i=0;in=a[k]; r=b[k]; } m=m*10; } return (gg); }

На рис.31 показана схема включения очередного элемента списка в К-й карман.



Рис.31. Схема включения очередного элемента списка в карман.


Разновидностью распределяющей сортировки является битовая сортировка. В ней элементы списка интерпретируются как двоичные числа, и D(j,n) обозначает j-ю справа двоичную цифру числа n. При этой сортировке в процессе РАСПРЕДЕЛЕНИЕ требуются только два вспомогательных кармана В0 и В1; их можно разместить в одном массиве, двигая списки В0 и В1 навстречу друг другу и отмечая точку встречи. Для осуществления СБОРКИ нужно за списком В0 написать инвертированный список В1.

Так как выделение j-го бита требует только операций сдвига, то битовая сортировка хорошо подходит для внешней сортировки на магнитных лентах и дисках.

Разновидностью битовой сортировки является бинарная сортировка. Здесь из всех элементов списка B= выделяются его минимальный и максимальный элементы и находится их среднее арифметическое m=(MIN+MAX)/2. Список В разбивается на подсписки В1 и В2, причем в В1 попадают элементы, не большие m, а в список В2 - элементы, большие m. Потом для непустых подсписков В1 и В2 сортировка продолжается рекурсивно.

[ | | ]

Copyright &copy


Содержание раздела